Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease

Identifieur interne : 000798 ( Pmc/Corpus ); précédent : 000797; suivant : 000799

MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease

Auteurs : Gary Wong ; Wenjun Liu ; Yingxia Liu ; Boping Zhou ; Yuhai Bi ; George F. Gao

Source :

RBID : PMC:7128246

Abstract

Super-spreading occurs when a single patient infects a disproportionate number of contacts. The 2015 MERS-CoV, 2003 SARS-CoV, and to a lesser extent 2014–15 Ebola virus outbreaks were driven by super-spreaders. We summarize documented super-spreading in these outbreaks, explore contributing factors, and suggest studies to better understand super-spreading.


Url:
DOI: 10.1016/j.chom.2015.09.013
PubMed: 26468744
PubMed Central: 7128246

Links to Exploration step

PMC:7128246

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease</title>
<author>
<name sortKey="Wong, Gary" sort="Wong, Gary" uniqKey="Wong G" first="Gary" last="Wong">Gary Wong</name>
<affiliation>
<nlm:aff id="aff1">CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Wenjun" sort="Liu, Wenjun" uniqKey="Liu W" first="Wenjun" last="Liu">Wenjun Liu</name>
<affiliation>
<nlm:aff id="aff1">CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yingxia" sort="Liu, Yingxia" uniqKey="Liu Y" first="Yingxia" last="Liu">Yingxia Liu</name>
<affiliation>
<nlm:aff id="aff3">Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Boping" sort="Zhou, Boping" uniqKey="Zhou B" first="Boping" last="Zhou">Boping Zhou</name>
<affiliation>
<nlm:aff id="aff3">Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bi, Yuhai" sort="Bi, Yuhai" uniqKey="Bi Y" first="Yuhai" last="Bi">Yuhai Bi</name>
<affiliation>
<nlm:aff id="aff1">CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, George F" sort="Gao, George F" uniqKey="Gao G" first="George F." last="Gao">George F. Gao</name>
<affiliation>
<nlm:aff id="aff1">CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing 102206, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26468744</idno>
<idno type="pmc">7128246</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7128246</idno>
<idno type="RBID">PMC:7128246</idno>
<idno type="doi">10.1016/j.chom.2015.09.013</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000798</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000798</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease</title>
<author>
<name sortKey="Wong, Gary" sort="Wong, Gary" uniqKey="Wong G" first="Gary" last="Wong">Gary Wong</name>
<affiliation>
<nlm:aff id="aff1">CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Wenjun" sort="Liu, Wenjun" uniqKey="Liu W" first="Wenjun" last="Liu">Wenjun Liu</name>
<affiliation>
<nlm:aff id="aff1">CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yingxia" sort="Liu, Yingxia" uniqKey="Liu Y" first="Yingxia" last="Liu">Yingxia Liu</name>
<affiliation>
<nlm:aff id="aff3">Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Boping" sort="Zhou, Boping" uniqKey="Zhou B" first="Boping" last="Zhou">Boping Zhou</name>
<affiliation>
<nlm:aff id="aff3">Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bi, Yuhai" sort="Bi, Yuhai" uniqKey="Bi Y" first="Yuhai" last="Bi">Yuhai Bi</name>
<affiliation>
<nlm:aff id="aff1">CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, George F" sort="Gao, George F" uniqKey="Gao G" first="George F." last="Gao">George F. Gao</name>
<affiliation>
<nlm:aff id="aff1">CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing 102206, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell Host & Microbe</title>
<idno type="ISSN">1931-3128</idno>
<idno type="eISSN">1934-6069</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Super-spreading occurs when a single patient infects a disproportionate number of contacts. The 2015 MERS-CoV, 2003 SARS-CoV, and to a lesser extent 2014–15 Ebola virus outbreaks were driven by super-spreaders. We summarize documented super-spreading in these outbreaks, explore contributing factors, and suggest studies to better understand super-spreading.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Baize, S" uniqKey="Baize S">S. Baize</name>
</author>
<author>
<name sortKey="Pannetier, D" uniqKey="Pannetier D">D. Pannetier</name>
</author>
<author>
<name sortKey="Oestereich, L" uniqKey="Oestereich L">L. Oestereich</name>
</author>
<author>
<name sortKey="Rieger, T" uniqKey="Rieger T">T. Rieger</name>
</author>
<author>
<name sortKey="Koivogui, L" uniqKey="Koivogui L">L. Koivogui</name>
</author>
<author>
<name sortKey="Magassouba, N" uniqKey="Magassouba N">N. Magassouba</name>
</author>
<author>
<name sortKey="Soropogui, B" uniqKey="Soropogui B">B. Soropogui</name>
</author>
<author>
<name sortKey="Sow, M S" uniqKey="Sow M">M.S. Sow</name>
</author>
<author>
<name sortKey="Keita, S" uniqKey="Keita S">S. Keïta</name>
</author>
<author>
<name sortKey="De Clerck, H" uniqKey="De Clerck H">H. De Clerck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Braden, C R" uniqKey="Braden C">C.R. Braden</name>
</author>
<author>
<name sortKey="Dowell, S F" uniqKey="Dowell S">S.F. Dowell</name>
</author>
<author>
<name sortKey="Jernigan, D B" uniqKey="Jernigan D">D.B. Jernigan</name>
</author>
<author>
<name sortKey="Hughes, J M" uniqKey="Hughes J">J.M. Hughes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, B J" uniqKey="Cowling B">B.J. Cowling</name>
</author>
<author>
<name sortKey="Park, M" uniqKey="Park M">M. Park</name>
</author>
<author>
<name sortKey="Fang, V J" uniqKey="Fang V">V.J. Fang</name>
</author>
<author>
<name sortKey="Wu, P" uniqKey="Wu P">P. Wu</name>
</author>
<author>
<name sortKey="Leung, G M" uniqKey="Leung G">G.M. Leung</name>
</author>
<author>
<name sortKey="Wu, J T" uniqKey="Wu J">J.T. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D. Falzarano</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E. de Wit</name>
</author>
<author>
<name sortKey="Feldmann, F" uniqKey="Feldmann F">F. Feldmann</name>
</author>
<author>
<name sortKey="Rasmussen, A L" uniqKey="Rasmussen A">A.L. Rasmussen</name>
</author>
<author>
<name sortKey="Okumura, A" uniqKey="Okumura A">A. Okumura</name>
</author>
<author>
<name sortKey="Peng, X" uniqKey="Peng X">X. Peng</name>
</author>
<author>
<name sortKey="Thomas, M J" uniqKey="Thomas M">M.J. Thomas</name>
</author>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N. van Doremalen</name>
</author>
<author>
<name sortKey="Haddock, E" uniqKey="Haddock E">E. Haddock</name>
</author>
<author>
<name sortKey="Nagy, L" uniqKey="Nagy L">L. Nagy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gire, S K" uniqKey="Gire S">S.K. Gire</name>
</author>
<author>
<name sortKey="Goba, A" uniqKey="Goba A">A. Goba</name>
</author>
<author>
<name sortKey="Andersen, K G" uniqKey="Andersen K">K.G. Andersen</name>
</author>
<author>
<name sortKey="Sealfon, R S" uniqKey="Sealfon R">R.S. Sealfon</name>
</author>
<author>
<name sortKey="Park, D J" uniqKey="Park D">D.J. Park</name>
</author>
<author>
<name sortKey="Kanneh, L" uniqKey="Kanneh L">L. Kanneh</name>
</author>
<author>
<name sortKey="Jalloh, S" uniqKey="Jalloh S">S. Jalloh</name>
</author>
<author>
<name sortKey="Momoh, M" uniqKey="Momoh M">M. Momoh</name>
</author>
<author>
<name sortKey="Fullah, M" uniqKey="Fullah M">M. Fullah</name>
</author>
<author>
<name sortKey="Dudas, G" uniqKey="Dudas G">G. Dudas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kline, S E" uniqKey="Kline S">S.E. Kline</name>
</author>
<author>
<name sortKey="Hedemark, L L" uniqKey="Hedemark L">L.L. Hedemark</name>
</author>
<author>
<name sortKey="Davies, S F" uniqKey="Davies S">S.F. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawler, J V" uniqKey="Lawler J">J.V. Lawler</name>
</author>
<author>
<name sortKey="Endy, T P" uniqKey="Endy T">T.P. Endy</name>
</author>
<author>
<name sortKey="Hensley, L E" uniqKey="Hensley L">L.E. Hensley</name>
</author>
<author>
<name sortKey="Garrison, A" uniqKey="Garrison A">A. Garrison</name>
</author>
<author>
<name sortKey="Fritz, E A" uniqKey="Fritz E">E.A. Fritz</name>
</author>
<author>
<name sortKey="Lesar, M" uniqKey="Lesar M">M. Lesar</name>
</author>
<author>
<name sortKey="Baric, R S" uniqKey="Baric R">R.S. Baric</name>
</author>
<author>
<name sortKey="Kulesh, D A" uniqKey="Kulesh D">D.A. Kulesh</name>
</author>
<author>
<name sortKey="Norwood, D A" uniqKey="Norwood D">D.A. Norwood</name>
</author>
<author>
<name sortKey="Wasieloski, L P" uniqKey="Wasieloski L">L.P. Wasieloski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcauliffe, J" uniqKey="Mcauliffe J">J. McAuliffe</name>
</author>
<author>
<name sortKey="Vogel, L" uniqKey="Vogel L">L. Vogel</name>
</author>
<author>
<name sortKey="Roberts, A" uniqKey="Roberts A">A. Roberts</name>
</author>
<author>
<name sortKey="Fahle, G" uniqKey="Fahle G">G. Fahle</name>
</author>
<author>
<name sortKey="Fischer, S" uniqKey="Fischer S">S. Fischer</name>
</author>
<author>
<name sortKey="Shieh, W J" uniqKey="Shieh W">W.J. Shieh</name>
</author>
<author>
<name sortKey="Butler, E" uniqKey="Butler E">E. Butler</name>
</author>
<author>
<name sortKey="Zaki, S" uniqKey="Zaki S">S. Zaki</name>
</author>
<author>
<name sortKey="St Claire, M" uniqKey="St Claire M">M. St Claire</name>
</author>
<author>
<name sortKey="Murphy, B" uniqKey="Murphy B">B. Murphy</name>
</author>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K. Subbarao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paunio, M" uniqKey="Paunio M">M. Paunio</name>
</author>
<author>
<name sortKey="Peltola, H" uniqKey="Peltola H">H. Peltola</name>
</author>
<author>
<name sortKey="Valle, M" uniqKey="Valle M">M. Valle</name>
</author>
<author>
<name sortKey="Davidkin, I" uniqKey="Davidkin I">I. Davidkin</name>
</author>
<author>
<name sortKey="Virtanen, M" uniqKey="Virtanen M">M. Virtanen</name>
</author>
<author>
<name sortKey="Heinonen, O P" uniqKey="Heinonen O">O.P. Heinonen</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S. Riley</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C. Fraser</name>
</author>
<author>
<name sortKey="Donnelly, C A" uniqKey="Donnelly C">C.A. Donnelly</name>
</author>
<author>
<name sortKey="Ghani, A C" uniqKey="Ghani A">A.C. Ghani</name>
</author>
<author>
<name sortKey="Abu Raddad, L J" uniqKey="Abu Raddad L">L.J. Abu-Raddad</name>
</author>
<author>
<name sortKey="Hedley, A J" uniqKey="Hedley A">A.J. Hedley</name>
</author>
<author>
<name sortKey="Leung, G M" uniqKey="Leung G">G.M. Leung</name>
</author>
<author>
<name sortKey="Ho, L M" uniqKey="Ho L">L.M. Ho</name>
</author>
<author>
<name sortKey="Lam, T H" uniqKey="Lam T">T.H. Lam</name>
</author>
<author>
<name sortKey="Thach, T Q" uniqKey="Thach T">T.Q. Thach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, S" uniqKey="Su S">S. Su</name>
</author>
<author>
<name sortKey="Wong, G" uniqKey="Wong G">G. Wong</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Gao, G F" uniqKey="Gao G">G.F. Gao</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Bi, Y" uniqKey="Bi Y">Y. Bi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, G" uniqKey="Wong G">G. Wong</name>
</author>
<author>
<name sortKey="Qiu, X" uniqKey="Qiu X">X. Qiu</name>
</author>
<author>
<name sortKey="Richardson, J S" uniqKey="Richardson J">J.S. Richardson</name>
</author>
<author>
<name sortKey="Cutts, T" uniqKey="Cutts T">T. Cutts</name>
</author>
<author>
<name sortKey="Collignon, B" uniqKey="Collignon B">B. Collignon</name>
</author>
<author>
<name sortKey="Gren, J" uniqKey="Gren J">J. Gren</name>
</author>
<author>
<name sortKey="Aviles, J" uniqKey="Aviles J">J. Aviles</name>
</author>
<author>
<name sortKey="Embury Hyatt, C" uniqKey="Embury Hyatt C">C. Embury-Hyatt</name>
</author>
<author>
<name sortKey="Kobinger, G P" uniqKey="Kobinger G">G.P. Kobinger</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="discussion">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cell Host Microbe</journal-id>
<journal-id journal-id-type="iso-abbrev">Cell Host Microbe</journal-id>
<journal-title-group>
<journal-title>Cell Host & Microbe</journal-title>
</journal-title-group>
<issn pub-type="ppub">1931-3128</issn>
<issn pub-type="epub">1934-6069</issn>
<publisher>
<publisher-name>Elsevier Inc.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26468744</article-id>
<article-id pub-id-type="pmc">7128246</article-id>
<article-id pub-id-type="publisher-id">S1931-3128(15)00382-0</article-id>
<article-id pub-id-type="doi">10.1016/j.chom.2015.09.013</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au1">
<name>
<surname>Wong</surname>
<given-names>Gary</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author" id="au2">
<name>
<surname>Liu</surname>
<given-names>Wenjun</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author" id="au3">
<name>
<surname>Liu</surname>
<given-names>Yingxia</given-names>
</name>
<xref rid="aff3" ref-type="aff">3</xref>
</contrib>
<contrib contrib-type="author" id="au4">
<name>
<surname>Zhou</surname>
<given-names>Boping</given-names>
</name>
<xref rid="aff3" ref-type="aff">3</xref>
</contrib>
<contrib contrib-type="author" id="au5">
<name>
<surname>Bi</surname>
<given-names>Yuhai</given-names>
</name>
<email>beeyh@im.ac.cn</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="aff2" ref-type="aff">2</xref>
<xref rid="aff3" ref-type="aff">3</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author" id="au6">
<name>
<surname>Gao</surname>
<given-names>George F.</given-names>
</name>
<email>gaof@im.ac.cn</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="aff2" ref-type="aff">2</xref>
<xref rid="aff3" ref-type="aff">3</xref>
<xref rid="aff4" ref-type="aff">4</xref>
<xref rid="cor2" ref-type="corresp">∗∗</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China</aff>
<aff id="aff2">
<label>2</label>
Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China</aff>
<aff id="aff3">
<label>3</label>
Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518112, China</aff>
<aff id="aff4">
<label>4</label>
Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing 102206, China</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author
<email>beeyh@im.ac.cn</email>
</corresp>
<corresp id="cor2">
<label>∗∗</label>
Corresponding author
<email>gaof@im.ac.cn</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>14</day>
<month>10</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>14</day>
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>10</month>
<year>2015</year>
</pub-date>
<volume>18</volume>
<issue>4</issue>
<fpage>398</fpage>
<lpage>401</lpage>
<permissions>
<copyright-statement>Copyright © 2015 Elsevier Inc. All rights reserved.</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Elsevier Inc.</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="abs0010">
<p>Super-spreading occurs when a single patient infects a disproportionate number of contacts. The 2015 MERS-CoV, 2003 SARS-CoV, and to a lesser extent 2014–15 Ebola virus outbreaks were driven by super-spreaders. We summarize documented super-spreading in these outbreaks, explore contributing factors, and suggest studies to better understand super-spreading.</p>
</abstract>
<abstract abstract-type="teaser" id="abs0015">
<p>Super-spreading occurs when a single patient infects a disproportionate number of contacts. The 2015 MERS-CoV, 2003 SARS-CoV, and to a lesser extent 2014–15 Ebola virus outbreaks were driven by super-spreaders. We summarize documented super-spreading in these outbreaks, explore contributing factors, and suggest studies to better understand super-spreading.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Main Text</title>
<sec id="sec1.1">
<title>Introduction</title>
<p id="p0010">A number of recent virus outbreaks have resulted in rapid virus spread, placing demands on the affected health infrastructures and sparking global concern. In September 2012, Middle East Respiratory Syndrome coronavirus (MERS-CoV) emerged as a novel virus that can result in severe respiratory disease with renal failure, with a case fatality rate of up to 38%. Primary infections typically occur in countries located in the Middle East, where dromedary camels have been identified as one of the species harboring the virus. However, travel has contributed to several cases in other countries. Notably, between May and July 2015, an outbreak of MERS-CoV centered in South Korea killed 36 people out of 186 confirmed cases (
<xref rid="bib10" ref-type="bibr">Promedmail.org, 2015</xref>
), with thousands quarantined as health authorities attempted to control virus spread.</p>
<p id="p0015">Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), a close relative of MERS-CoV, was the etiological agent responsible for an outbreak centered around Guangdong Province in the southeast of China. The SARS-CoV outbreak killed 774 and infected 8,096 people between November 2002 and July 2003, for a case fatality rate of 9.6%, in which the virus was first traced to palm civets, and then bats. Over 80% of the total cases and deaths were from mainland China and Hong Kong.</p>
<p id="p0020">More recently, a devastating Ebola virus (EBOV) outbreak has swept through Western Africa. EBOV is a filovirus that causes severe hemorrhagic fever in humans with up to a 90% case fatality rate if untreated. Outbreaks of EBOV are sporadic, unpredictable, and localized to sub-Saharan Africa. Prior to the 2014–15 outbreak, a total of 1,093 deaths out of 1,393 infections were documented dating back to 1976, when EBOV first emerged. The natural reservoir of EBOV is currently unknown, but fruit bats are suspected to be the animal species harboring the virus.</p>
<p id="p0025">In addition to their significant impact, these outbreaks were all perpetuated by super-spreaders who disproportionately infect a high number of contacts and likely contribute to the speed and degree of the outbreak. As discussed in detail below, these outbreaks can be traced to one or more individuals who largely contributed to subsequent infections.</p>
</sec>
<sec id="sec1.2">
<title>Super-Spreaders in the MERS-CoV Outbreak in South Korea</title>
<p id="p0030">The 2015 MERS-CoV outbreak in South Korea began from an imported case, a 68-year-old male with a recent travel history to several Middle Eastern countries, including Bahrain, the United Arab Emirates, Saudi Arabia, and Qatar. The latter three countries also had reported human cases of MERS-CoV during the same period of time. After the patient started exhibiting disease symptoms, he sought medical assistance at several clinics before being admitted to a hospital, where he was confirmed to be infected with MERS-CoV (
<xref rid="bib13" ref-type="bibr">WHO, 2015a</xref>
). Twenty-nine secondary infections have since been directly traced to this index patient. Additionally, two of these secondary cases were shown to be responsible for 106 subsequent infections, out of 166 known cases at the time (
<xref rid="bib3" ref-type="bibr">Cowling et al., 2015</xref>
). Transmission was mostly within nosocomial settings, and fourth generation infections have been documented for the first time since the virus was identified in 2012. Thus, the MERS-CoV outbreak in South Korea was driven primarily by three infected individuals, and approximately 75% of cases can be traced back to three super-spreaders who have each infected a disproportionately high number of contacts (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
A). This MERS-CoV outbreak is the second largest on record and the largest outside of the Middle East. The MERS-CoV outbreak currently appears to be under control, with no additional infections reported in South Korea since July 4, 2015.
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>Dynamics and the Role of Super-Spreaders in MERS-CoV and SARS-CoV Transmission</p>
<p>(A and B) Simplified diagrams of super-spreading events driving the 2015 MERS-CoV (A) and 2003 SARS-CoV (B) outbreaks. Super-spreaders are shown in red.</p>
<p>(C) The effect of super-spreaders during infection with a generic pathogen. Most infected cases have limited transmission levels, but infection of super-spreaders can rapidly increase the number of cases in the absence of early intervention, resulting in a (prolonged) outbreak or epidemic.</p>
</caption>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec1.3">
<title>The SARS-CoV Outbreak</title>
<p id="p0035">Retrospectively, several super-spreading events were also documented during the SARS-CoV outbreak in 2003. The index patient of the Hong Kong epidemic was treated at Prince of Wales Hospital and was associated with at least 125 secondary cases (
<xref rid="bib11" ref-type="bibr">Riley et al., 2003</xref>
). Subsequent super-spreader events occurred at the Hotel Metropole (13 cases) and the Amoy Gardens housing complex (over 180 cases) in Hong Kong and aboard an Air China flight traveling from Hong Kong to Beijing (22 cases) (
<xref rid="bib2" ref-type="bibr">Braden et al., 2013</xref>
). Notably, cases from Hotel Metropole were responsible for the spread of SARS-CoV to Canada, Vietnam, and Singapore through travel (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
B), and the imported case to Canada resulted in 128 SARS-CoV cases at a Toronto hospital (
<xref rid="bib2" ref-type="bibr">Braden et al., 2013</xref>
).</p>
</sec>
<sec id="sec1.4">
<title>Have Super-Spreaders Played a Role in Other Outbreaks?</title>
<p id="p0040">To a lesser extent, similar events were observed with the 2014-15 EBOV outbreak, centered in the Western African countries of Guinea, Sierra Leone, and Liberia. Epidemiological work has linked five infections with a 2-year-old toddler in the remote village of Meliandou, Guinea. One of the contacts, a midwife, infected at least three others, including a hospital worker at Guéckédou hospital. This worker then infected several family members in the Guéckédou Farako district, as well as 15 others at Macenta hospital (
<xref rid="bib1" ref-type="bibr">Baize et al., 2014</xref>
). One of the subsequent cases, a doctor, was known to have infected several others who traveled to Kissidougou and Nzérékoré, further propagating virus transmission (
<xref rid="bib1" ref-type="bibr">Baize et al., 2014</xref>
). The outbreak eventually spilled over to neighboring Liberia and Sierra Leone. In Sierra Leone, the funeral of a traditional healer that died from EBOV was shown to have directly infected 13 others (
<xref rid="bib5" ref-type="bibr">Gire et al., 2014</xref>
) and was eventually linked to more than 300 cases (
<xref rid="bib14" ref-type="bibr">WHO, 2015b</xref>
). The EBOV outbreak has killed 11,284 people, with 27,741 infected as of July 19 2015, en route to becoming the largest filovirus outbreak ever documented. In addition to EBOV, super-spreading has also been documented in outbreaks with other pathogens, including measles (
<xref rid="bib9" ref-type="bibr">Paunio et al., 1998</xref>
) and
<italic>Mycobacterium tuberculosis</italic>
(
<xref rid="bib6" ref-type="bibr">Kline et al., 1995</xref>
).</p>
</sec>
<sec id="sec1.5">
<title>Why Is the Super-Spreader Phenomenon Important?</title>
<p id="p0045">The initial stages of the outbreaks mentioned above involved at least one super-spreading event. The ability of the pathogen to infect subsequent super-spreaders who may export the disease through travel is likely the difference between an infection cluster and an outbreak or epidemic (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
C). Differences in the initial response to MERS-CoV is why South Korea reported clusters of infections before bringing the virus under control and why China, Thailand, and the Philippines have not reported any additional cases despite imported MERS-CoV infections. It was why SARS-CoV was so devastating in mainland China and Hong Kong from 2002 to 2003. It was also why the 2014–15 EBOV outbreak spiraled out of control in Western Africa, with hundreds of new cases reported weekly, before a coordinated international effort (including contact tracing, isolation, diagnosis, and treatment of infected patients, as well as community education) brought the number down to a more manageable 20–30 weekly infections, with most of the cases diagnosed in Guinea and Sierra Leone. Early discovery, diagnosis, intervention, and quarantine of confirmed cases is crucial for preventing further disease transmission in humans, especially via super-spreaders. As evidenced by the decreased numbers of new cases in the MERS-CoV and EBOV outbreaks, current responses are effective, provided that the measures are implemented properly and followed strictly. Vigilance and patience will be necessary until the ongoing MERS-CoV and EBOV outbreaks are officially at an end.</p>
</sec>
<sec id="sec1.6">
<title>Approaches or Guidelines that Can Proactively Identify Super-Spreaders</title>
<p id="p0050">Currently, super-spreaders are only retrospectively categorized after epidemiological tracing. Given their high propensity to spread infection, super-spreaders should be able to shed higher levels of pathogen and/or for a longer period of time after infection. This would increase the probability that the pathogen contacts and subsequently infects a naive host.</p>
<p id="p0055">To address whether there are factors or parameters that promote or indicate enhanced virus shedding in a laboratory setting, an animal species that closely recapitulates symptoms of the human disease is required, such that any findings can be translated to humans. Animals could be experimentally infected with different virus strains/variants at varying doses via different challenge routes, in which virus shedding from the oral, nasal, and rectal cavities should be correlated with different parameters, including viremia or virus titers in the organs. However, these studies are currently challenging for SARS-CoV as there is currently not an appropriate animal model that replicates the severe disease seen in humans; infected nonhuman primates exhibit variable, but at most mild to moderate, respiratory disease (
<xref rid="bib8" ref-type="bibr">McAuliffe et al., 2004</xref>
) (
<xref rid="bib7" ref-type="bibr">Lawler et al., 2006</xref>
). Nonetheless, these types of studies are feasible for MERS-CoV. A model of this infection was developed in the common marmoset that results in severe respiratory disease and partial lethality, in which live virus can be detected in nasal and throat swabs of infected animals (
<xref rid="bib4" ref-type="bibr">Falzarano et al., 2014</xref>
). Thus, the studies proposed above can be investigated with MERS-CoV in this animal model.</p>
<p id="p0060">For EBOV, the cynomolgus and rhesus macaque animal models are well characterized and have been used over the past 20+ years. EBOV shedding is known to occur from the oral, nasal, and/or rectal cavities of nonhuman primates during the advanced stages of disease, but factors that influence virus shedding from these animals have not yet been investigated. Interestingly, using a guinea pig model, it was shown that animals infected intranasally (i.n.) with guinea pig-adapted EBOV were more contagious to naive contact animals than those that were infected intraperitoneally (i.p.) with the same dose (
<xref rid="bib15" ref-type="bibr">Wong et al., 2015</xref>
). I.n. infected animals shed virus from their nasal cavity earlier than their i.p. counterparts, and i.p. challenged animals died earlier (and thus were removed from contact with naive animals) compared to i.n. inoculated guinea pigs. It was therefore concluded that the route of infection in addition to the duration of contact time with an infectious host may be factors that influence the efficiency of virus transmission. It will take time to elucidate all possible host and viral factors that contribute to virus shedding, which remains an understudied topic to date. Therefore, it is not currently possible to predict with any level of confidence or statistical significance whether a person will become a super-spreader of a certain disease. Large-scale genome-wide association studies (GWAS) of super-spreaders might provide some clues about the genetic backgrounds of super-spreaders, but the feasibility and robustness of these analyses will depend on the number of super-spreaders in a given outbreak.</p>
</sec>
<sec id="sec1.7">
<title>Additional Approaches to Study Risk Factors behind Super-Spreading</title>
<p id="p0065">The large amount of patient data and samples available from the recent MERS-CoV and EBOV outbreaks provide possible opportunities to investigate factors that may correlate with an increased risk for becoming a super-spreader. Using the MERS-CoV outbreak as an example, detailed records were kept for the majority of patients who were confirmed to be infected with MERS-CoV. Since the identities of the three super-spreaders are known as Patients #1, #14, and #16, studies can be performed to investigate whether these three patients have common traits (i.e., age, gender, pre-existing medical conditions or underlying co-morbidities, levels of virus shedding, etc.). Any common characteristics can then be compared with non-super-spreader patients to provide insight into possible risk factors behind enhanced spreading of infectious diseases.</p>
<p id="p0070">Another approach would be to isolate MERS-CoV from the three known super-spreaders, perform sequence analysis of the viral genomes, and determine whether there are any shared mutations between these isolates. Any mutations that are identified and are absent from the viral genomes of other patients could be indicators of enhanced virus shedding, allowing for super-spreading to occur.</p>
</sec>
<sec id="sec1.8">
<title>Concluding Remarks</title>
<p id="p0075">A complex combination of factors likely plays a role in the number of subsequent infections initiating from a single super-spreader. In addition to host and virus factors, other important factors impacting the spread of infectious diseases are the environment and behavior of individuals. Environmental factors include the close proximity of other susceptible hosts and the airflow dynamics within an enclosed area. A high population density represents a greater number of susceptible hosts for direct/indirect contact with an infected person, whereas air re-circulation would especially facilitate the transmission of airborne viruses, such as MERS-CoV and SARS-CoV. Hospitals, enclosed housing complexes, and mass transportation, such as airplanes, are documented sites of super-spreader events, especially during the MERS-CoV and SARS-CoV outbreaks (
<xref rid="tbl1" ref-type="table">Table 1</xref>
). Individual behaviors may also enhance disease spread. These include “doctor shopping”—going to multiple hospitals to treat the same ailments or traveling to other countries after the appearance of disease symptoms, which was observed with the MERS-CoV outbreak (
<xref rid="bib12" ref-type="bibr">Su et al., 2015</xref>
). Traditional customs, such as unsafe funerals/burials in Africa, which involve direct contact with infectious bodily fluids of patients that passed away from EBOV disease, is another major reason why the outbreak persisted in Guinea and Sierra Leone (
<xref rid="tbl1" ref-type="table">Table 1</xref>
). A thorough study of host, virus, and environmental dynamics will be important to delineate the relative contribution of each factor to the phenomenon of super-spreading. Findings from these studies, combined with changes in behavior conducive to the spread of disease, will be important for the effective management of and preparation for future outbreaks.
<table-wrap position="float" id="tbl1">
<label>Table 1</label>
<caption>
<p>Factors that May Influence Infectious Diseases Transmission</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Factors that Influence Transmission</th>
<th>Examples from MERS-CoV, SARS-CoV, and EBOV</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">Virus and Host</td>
<td>Virus mutation: the virus may acquire mutations to replicate more efficiently and become highly pathogenic, which may result in higher levels of virus shedding for a longer period of time.</td>
</tr>
<tr>
<td>Duration of contact with an infectious host and route of infection: in a guinea pig model of EBOV infection, animals that were infected mucosally were more infectious than those that were infected systemically. Additionally, prolonged contact with a contagious animal resulted in a higher rate of virus transmission.</td>
</tr>
<tr>
<td>Genetic susceptibility: EBOV is known to be more pathogenic in cynomolgus macaques compared to other nonhuman primate species, such as rhesus macaques. Different nonhuman primate species also demonstrate variable susceptibility to SARS-CoV infection. Hosts that are more susceptible to disease may exhibit higher levels of virus shedding.</td>
</tr>
<tr>
<td>Underlying medical conditions: certain conditions may decrease immunity and increase susceptibility to pathogens, leading to enhanced virus shedding. Many fatal MERS-CoV patients in the recent outbreak in South Korea had other pre-existing medical conditions, including pneumonia and kidney disease.</td>
</tr>
<tr>
<td rowspan="2">Environment</td>
<td>Air re-circulation in enclosed spaces: this would increase chances of pathogen encounter, especially those that are airborne. During the SARS-CoV outbreak, this was shown to be a factor behind super-spreading events at the Hotel Metropole, Amoy Gardens housing complex, and a flight between China and Canada. It is likely a contributing factor to the MERS-CoV outbreak since super-spreading events occurred at a hospital or medical clinic.</td>
</tr>
<tr>
<td>Population density: increased numbers of people equally increases the chances to infect a naive host through inadvertent direct or indirect contact.</td>
</tr>
<tr>
<td rowspan="3">Behavior</td>
<td>Traditional customs and beliefs conducive to infectious disease spread: the culture of “doctor shopping,” in which patients seek medical attention from multiple doctors at different clinics/hospitals allowed MERS-CoV to spread rapidly in South Korea. Unsafe burials and traditional funerals, which involve touching and washing infectious bodies, played a role in EBOV spread in Western Africa.</td>
</tr>
<tr>
<td>Travel and trade: the global nature of today’s world allows infectious diseases to easily bypass geographical barriers. For instance, MERS-CoV originated from the Middle East, but imported cases were reported in North America, Europe, and Asia. SARS-CoV originated in Asia, and imported cases were reported in North America, Europe, and other parts of Asia. EBOV originated from Africa, and imported cases were reported in North America and Europe.</td>
</tr>
<tr>
<td>Knowledge and adherence to public health advice: during the MERS-CoV outbreak, a case was imported to China because a South Korean patient did not follow the recommendations of health authorities and traveled despite being a symptomatic, high-risk contact. However, China handled the imported case properly, and the imported Korean patient did not become a super-spreader. During the EBOV outbreak, some patients were able to escape quarantine, thereby increasing the likelihood of infecting others.</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
</sec>
</body>
<back>
<ref-list id="cebib0010">
<title>References</title>
<ref id="bib1">
<element-citation publication-type="journal" id="sref1">
<person-group person-group-type="author">
<name>
<surname>Baize</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pannetier</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Oestereich</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rieger</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Koivogui</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Magassouba</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Soropogui</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sow</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Keïta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>De Clerck</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Emergence of Zaire Ebola virus disease in Guinea</article-title>
<source>N. Engl. J. Med.</source>
<volume>371</volume>
<year>2014</year>
<fpage>1418</fpage>
<lpage>1425</lpage>
<pub-id pub-id-type="pmid">24738640</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="journal" id="sref2">
<person-group person-group-type="author">
<name>
<surname>Braden</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Dowell</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Jernigan</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Progress in global surveillance and response capacity 10 years after severe acute respiratory syndrome</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>19</volume>
<year>2013</year>
<fpage>864</fpage>
<lpage>869</lpage>
<pub-id pub-id-type="pmid">23731871</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal" id="sref3">
<person-group person-group-type="author">
<name>
<surname>Cowling</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>V.J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.T.</given-names>
</name>
</person-group>
<article-title>Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015</article-title>
<source>Euro Surveill.</source>
<volume>20</volume>
<year>2015</year>
<fpage>7</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">26132767</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal" id="sref4">
<person-group person-group-type="author">
<name>
<surname>Falzarano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Okumura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>van Doremalen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Haddock</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Nagy</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Infection with MERS-CoV causes lethal pneumonia in the common marmoset</article-title>
<source>PLoS Pathog.</source>
<volume>10</volume>
<year>2014</year>
<fpage>e1004250</fpage>
<pub-id pub-id-type="pmid">25144235</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal" id="sref5">
<person-group person-group-type="author">
<name>
<surname>Gire</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Goba</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>K.G.</given-names>
</name>
<name>
<surname>Sealfon</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Kanneh</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jalloh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Momoh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fullah</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dudas</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak</article-title>
<source>Science</source>
<volume>345</volume>
<year>2014</year>
<fpage>1369</fpage>
<lpage>1372</lpage>
<pub-id pub-id-type="pmid">25214632</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal" id="sref6">
<person-group person-group-type="author">
<name>
<surname>Kline</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Hedemark</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>S.F.</given-names>
</name>
</person-group>
<article-title>Outbreak of tuberculosis among regular patrons of a neighborhood bar</article-title>
<source>N. Engl. J. Med.</source>
<volume>333</volume>
<year>1995</year>
<fpage>222</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="pmid">7791838</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal" id="sref7">
<person-group person-group-type="author">
<name>
<surname>Lawler</surname>
<given-names>J.V.</given-names>
</name>
<name>
<surname>Endy</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Hensley</surname>
<given-names>L.E.</given-names>
</name>
<name>
<surname>Garrison</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Lesar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Kulesh</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Norwood</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Wasieloski</surname>
<given-names>L.P.</given-names>
</name>
</person-group>
<article-title>Cynomolgus macaque as an animal model for severe acute respiratory syndrome</article-title>
<source>PLoS Med.</source>
<volume>3</volume>
<year>2006</year>
<fpage>e149</fpage>
<pub-id pub-id-type="pmid">16605302</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal" id="sref8">
<person-group person-group-type="author">
<name>
<surname>McAuliffe</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fahle</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shieh</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>St Claire</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Subbarao</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys</article-title>
<source>Virology</source>
<volume>330</volume>
<year>2004</year>
<fpage>8</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">15527829</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal" id="sref9">
<person-group person-group-type="author">
<name>
<surname>Paunio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Peltola</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Valle</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Davidkin</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Virtanen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Heinonen</surname>
<given-names>O.P.</given-names>
</name>
</person-group>
<article-title>Explosive school-based measles outbreak: intense exposure may have resulted in high risk, even among revaccinees</article-title>
<source>Am. J. Epidemiol.</source>
<volume>148</volume>
<year>1998</year>
<fpage>1103</fpage>
<lpage>1110</lpage>
<pub-id pub-id-type="pmid">9850133</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<mixed-citation publication-type="other" id="sref10">Promedmail.org (2015). MERS-COV (97): South Korea, Saudi Arabia. International Society for Infectious Diseases.</mixed-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal" id="sref11">
<person-group person-group-type="author">
<name>
<surname>Riley</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Ghani</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Abu-Raddad</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Hedley</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>T.H.</given-names>
</name>
<name>
<surname>Thach</surname>
<given-names>T.Q.</given-names>
</name>
</person-group>
<article-title>Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions</article-title>
<source>Science</source>
<volume>300</volume>
<year>2003</year>
<fpage>1961</fpage>
<lpage>1966</lpage>
<pub-id pub-id-type="pmid">12766206</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal" id="sref12">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>G.F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bi</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>MERS in South Korea and China: a potential outbreak threat?</article-title>
<source>Lancet</source>
<volume>385</volume>
<year>2015</year>
<fpage>2349</fpage>
<lpage>2350</lpage>
<pub-id pub-id-type="pmid">26088634</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<mixed-citation publication-type="other" id="sref13">WHO (2015a). Middle East respiratory syndrome coronavirus (MERS-CoV) – Republic of Korea. Disease Outbreak News. 24 May 2015.
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/24-may-2015-mers-korea/en/" id="intref0010">http://www.who.int/csr/don/24-may-2015-mers-korea/en/</ext-link>
.</mixed-citation>
</ref>
<ref id="bib14">
<mixed-citation publication-type="other" id="sref14">WHO (2015b). Sierra Leone: a traditional healer and a funeral.
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/disease/ebola/ebola-6-months/sierra-leone/en/" id="intref0015">http://www.who.int/csr/disease/ebola/ebola-6-months/sierra-leone/en/</ext-link>
.</mixed-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal" id="sref15">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Cutts</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Collignon</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gren</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Aviles</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Embury-Hyatt</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kobinger</surname>
<given-names>G.P.</given-names>
</name>
</person-group>
<article-title>Ebola virus transmission in guinea pigs</article-title>
<source>J. Virol.</source>
<volume>89</volume>
<year>2015</year>
<fpage>1314</fpage>
<lpage>1323</lpage>
<pub-id pub-id-type="pmid">25392221</pub-id>
</element-citation>
</ref>
</ref-list>
<ack id="ack0010">
<title>Acknowledgments</title>
<p>This work is partially supported by the National Natural Science Foundation of China (81461168030, 81590761), China Ministry of Science and Technology Project 973 (2011CB504703), the special project of Ebola virus research from the President Foundation of Chinese Academy of Sciences (CAS), and the IDRC-APEIR program (106915-001). G.F.G. is a leading principal investigator of the NSFC Innovative Research Group (81321063). G.W. is the recipient of a Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research (CIHR) and the CAS President’s International Fellowship Initiative.</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000798 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000798 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7128246
   |texte=   MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26468744" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021